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OPTIMIZING WEIGHTED ENSEMBLE SAMPLING OF STEADY
STATES\ast 

DAVID ARISTOFF\dagger AND DANIEL M. ZUCKERMAN\ddagger 

Abstract. We propose parameter optimization techniques for weighted ensemble sampling of
Markov chains in the steady-state regime. Weighted ensemble consists of replicas of a Markov chain,
each carrying a weight, that are periodically resampled according to their weights inside of each of a
number of bins that partition state space. We derive, from first principles, strategies for optimizing
the choices of weighted ensemble parameters, in particular the choice of bins and the number of
replicas to maintain in each bin. In a simple numerical example, we compare our new strategies with
more traditional ones and with direct Monte Carlo.

Key words. Markov chains, resampling, sequential Monte Carlo, weighted ensemble, molecular
dynamics, reaction networks, steady state, coarse graining
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1. Introduction. Weighted ensemble is a Monte Carlo method based on strati-
fication and resampling, originally designed to solve problems in computational chem-
istry [8, 12, 15, 17, 18, 23, 34, 46, 47, 51, 61, 62, 64, 66]. Weighted ensemble currently
has a substantial user base; see [65] for software and a more complete list of pub-
lications. In general terms, the method consists of periodically resampling from an
ensemble of weighted replicas of a Markov process. In each of a number of bins, a
certain number of replicas is maintained according to a prescribed replica allocation.
The weights are adjusted so that the weighted ensemble has the correct distribu-
tion [62]. In the context of rare event or small probability calculations, weighted en-
semble can significantly outperform direct Monte Carlo or independent replicas; the
performance gain comes from allocating more particles to important or rare regions
of state space. In this sense, weighted ensemble can be understood as an importance
sampling method. We assume the underlying Markov process is expensive to simulate,
so that optimizing variance versus cost is critical. In applications, the Markov process
is usually a high dimensional drift diffusion, such as Langevin molecular dynamics [50],
or a continuous time Markov chain representing reaction network dynamics [3].

We focus on the computation of the average of a given function or observable with
respect to the unique steady state of the Markov process, though many of our ideas
could also be applied in a finite time setting. One of the most common applications
of weighted ensemble is the computation of a mean first passage time, or the mean
time for a Markov process to go from an initial state to some target set. The mean
first passage time is an important quantity in physical and chemical processes, but it
can be prohibitively large to compute using direct Monte Carlo simulation [1, 33, 42].
In weighted ensemble, the mean first passage time to a target set is reformulated, via
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OPTIMIZING WEIGHTED ENSEMBLE SAMPLING 647

the Hill relation [32], as the inverse of the steady state flux into the target. Here,
the observable is the characteristic or indicator function of the target set, and the
flux is the steady-state average of this observable. This steady state can sometimes
be accessed on time scales much smaller than the mean first passage time [1, 16, 63].
On the other hand, when the mean first passage time is very large, the corresponding
steady-state flux is very small and needs to be estimated with substantial precision,
which is why importance sampling is needed. The steady state in this case, and in
most weighted ensemble applications, is not known up to a normalization factor. As
a result, many standard Monte Carlo methods, including those based on Metropolis--
Hastings, do not apply.

In this article we consider weighted ensemble parameter optimization for steady-
state averages. Our work here expands on related results in [5] for weighted ensemble
optimization on finite time horizons. For a given Markov chain, weighted ensemble is
completely characterized by the choice of resampling times, bins, and replica alloca-
tion. In this article we discuss how to choose the bins and replica allocation. We also
argue that the frequency of resampling times is mainly limited by processor interaction
cost and not variance. We use a first-principles, finite replica analysis based on Doob
decomposing the weighted ensemble variance. Our earlier work [5] is based on this
same mathematical technique, but the methods described there are not suitable for
long-time computations or bin optimization [4]. As is usual in importance sampling,
our parameter optimizations require estimates of the very variance terms we want
to minimize. However, because weighted ensemble is statistically exact no matter the
parameters [4, 62], these estimates can be crude. The choice of parameters affects the
variance, not the mean so we only require parameters that are good enough to beat
direct Monte Carlo.

From the point of view of applications, similar particle methods employing strat-
ification include exact milestoning [7], nonequilibrium umbrella sampling [55, 22],
transition interface sampling [53], trajectory tilting [54], and boxed molecular dy-
namics [30]. There are related methods based on sampling reactive paths, or paths
going directly from a source to a target, in the context of the mean first passage time
problem just cited. Such methods include forward flux sampling [2] and adaptive mul-
tilevel splitting [9, 10, 11]. These methods differ from weighted ensemble in that they
estimate the mean first passage time directly from reactive paths rather than from
steady state and the Hill relation. In contrast with many of these methods, weighted
ensemble is simple enough to allow for a relatively straightforward nonasymptotic
variance analysis based on Doob decomposition [24].

From a mathematical viewpoint, weighted ensemble is simply a resampling-based
evolutionary algorithm. In this sense it resembles particle filters, sequential impor-
tance sampling, and sequential Monte Carlo. For a review of sequential Monte Carlo,
see the textbook [19], the articles [20, 21], or the compilation [28]. There is some re-
cent work on optimizing the Gibbs--Boltzmann input potential functions in sequential
Monte Carlo [6, 13, 36, 56, 60] (see also [21]). We emphasize that weighted ensemble
is different from most sequential Monte Carlo methods, as it relies on a bin-based
resampling mechanism rather than a globally defined fitness function like a Gibbs--
Boltzmann potential. In particular, sequential Monte Carlo is more commonly used
to sample rare events on finite time horizons, and may not be appropriate for very
long-time computations of the sort considered here, as explained in [4].

To our knowledge, the binning and particle allocation strategies we derive here
are new. A similar allocation strategy for weighted ensemble on finite time horizons
was proposed in [5]. Our allocation strategy, which minimizes mutation variance---
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648 DAVID ARISTOFF AND DANIEL M. ZUCKERMAN

the variance corresponding to evolution of the replicas---extends ideas from [5] to our
steady-state setup. We draw an analogy between minimizing mutation variance and
minimizing sensitivity in an appendix. In most weighted ensemble simulations, and
in [5], bins are chosen in an ad hoc way. We show below, however, that choosing bins
carefully is important, particularly if relatively few can be afforded. We propose a
new binning strategy based on minimizing selection variance---the variance associated
with resampling from the replicas---in which weighted ensemble bins are aggregated
from a collection of smaller microbins [15].

Formulas for the mutation and selection variance are derived in a companion
paper [4] that proves an ergodic theorem for weighted ensemble time averages. These
variance formulas, which we use to define our allocation and bin optimizations, involve
the Markov kernel K that describes the evolution of the underlying Markov process
between resampling times, as well as the solution, h, of a certain Poisson equation.
We propose estimating K and h with techniques from Markov state modeling [35, 45,
48, 49]. In this formulation, the microbins correspond to the Markov states, and a
microbin-to-microbin transition matrix defines the approximations of K and h.

This article is organized as follows. In section 2, we introduce notation, give an
overview of weighted ensemble, and describe the parameters we wish to optimize. In
section 3, we present weighted ensemble in precise detail (Algorithm 3.1), reproduce
the aforementioned variance formulas (Lemmas 3.4 and 3.5) from our companion pa-
per [4], and describe the solution, h, to a certain Poisson equation arising from these
formulas ((3.15) and (3.16)). In section 4, we introduce novel optimization problems
((4.3) and (4.6)) for choosing the bins and particle allocation. The resulting alloca-
tion in (4.4) can be seen as a version of (6.4) in [5], modified for steady state and our
new microbin setup. These optimizations are idealized in the sense that they involve
K and h, which cannot be computed exactly. Thus in section 5, we propose us-
ing microbins and Markov state modeling to estimate their solutions (Algorithms 5.1
and 5.2). In section 6, we test our methods with a simple numerical example (Fig-
ures 6.1--6.4). Concluding remarks and suggestions for future work are in section 7. In
the appendix, we describe residual resampling [26], a common resampling technique,
and draw an analogy between sensitivity and our mutation variance minimization
strategy.

2. Algorithm. A weighted ensemble consists of a collection of replicas, or parti-
cles, belonging to a common state space, with associated positive scalar weights. The
particles repeatedly undergo resampling and evolution steps. Using a genealogical
analogy, we refer to particles before resampling as parents, and just after resampling
as children. A child is initially just a copy of its parent, though it evolves indepen-
dently of other children of the same parent. The total weight remains constant in time,
which is important for the stability of long-time averages [4] (and is a critical differ-
ence between the optimization algorithm described in [5] and the one outlined here).
Between resampling steps, the particles evolve independently via the same Markov
kernel K. The initial parents can be arbitrary, though their weights must sum to 1;
see Algorithm 5.3 for a description of an initialization step tailored to steady-state
calculations. The number Ninit of initial particles can be larger than the number N
of weighted ensemble particles after the first resampling step.

For the resampling or selection step, we require a collection of bins, denoted \scrB ,
and a particle allocation Nt(u)

u\in \scrB 
t\geq 0 , where Nt(u) is the (nonnegative integer) number

of children in bin u \in \scrB at time t. We will assume the bins form a partition of state
space (though in general they can be any grouping of the particles [4]). The total
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OPTIMIZING WEIGHTED ENSEMBLE SAMPLING 649

number of children is always N =
\sum 

u\in \scrB Nt(u). Both the bins and particle allocation
are user-chosen parameters, and to a large extent this article concerns how to pick
these parameters. In general, the bins and particle allocation can be time dependent
and adaptive. For simpler presentation, however, we assume that the bins are based
on a fixed partition of state space. After selection, the weight of each child in bin
u \in \scrB is \omega t(u)/Nt(u), where \omega t(u) is the sum of the weights of all the parents in bin u.
By construction, this preserves the total weight

\sum 
u\in \scrB \omega t(u) = 1. In every occupied

bin u, the Nt(u) \geq 1 children are selected from the parents in bin u with probability
proportional to the parents' weights. (Here, we mean bin u is occupied if \omega t(u) > 0.
In unoccupied bins, where \omega t(u) = 0, we set Nt(u) = 0.)

In the evolution or mutation step, the time t advances, and all the children inde-
pendently evolve one step according to a fixed Markov kernel K, keeping their weights
from the selection step, and becoming the next parents. In practice, K corresponds to
the underlying process evaluated at resampling times \Delta t. That is, K is a \Delta t-skeleton
of the underlying Markov process [43]. For the mathematical analysis below, this will
only be important when we consider varying the resampling times and, in particular,
the \Delta t \rightarrow 0 limit. (We think of this underlying process as being continuous in time,
though of course time discretization is usually required for simulations. Weighted en-
semble is used on top of an integrator of the underlying process; in particular weighted
ensemble does not handle the time discretization. We will not be concerned with the
unavoidable error resulting from time discretization.) We assume that K is uniformly
geometrically ergodic [27] with respect to a stationary distribution, or steady state,
\mu . Recall we are interested in steady-state averages. Thus for a given bounded real-
valued function or observable f on state space, we estimate

\int 
f d\mu at each time by

evaluating the weighted sum of f on the current collection of parent particles.
We summarize weighted ensemble as follows:
\bullet In the selection step at time t, inside each bin u, we resample Nt(u) children from
the parents in u, according to the distribution defined by their weights. After
selection, all the children in bin u have the same weight \omega t(u)/Nt(u), where \omega t(u)
is the total weight in bin u before and after selection.
\bullet In each mutation step, the children evolve independently according to the Markov
kernel K. After evolution, these children become the new parents.
\bullet The weighted ensemble evolves by repeated selection and then mutation steps.
The time t advances after a single pair of selection and mutation steps.

See Algorithm 3.1 for a detailed description of weighted ensemble.
An important property of weighted ensemble is that it is unbiased no matter the

choice of parameters: at time t the weighted particles have the same distribution as
a Markov chain evolving according to K. See Theorem 3.1. With bad parameters,
however, weighted ensemble can suffer from large variance, even worse than direct
Monte Carlo. As there is no free lunch, choosing parameters cleverly requires either
some information about K, perhaps gleaned from prior simulations or obtained adap-
tively during weighted ensemble simulations. We will assume we have a collection
of microbins which we use to gain information about K. The microbins, like the
weighted ensemble bins, form a partition of state space, and each bin will be a union
of microbins. We use the term microbins because the microbins may be smaller than
the actual weighted ensemble bins. We discuss the reasoning behind this distinction
in section 5; see Remark 5.1.

3. Mathematical notation and algorithm. We write \xi 1t , . . . , \xi 
N
t for the par-

ents at time t and \omega 1
t , . . . , \omega 

N
t for their weights. Their children are denoted \^\xi 1t , . . . ,

\^\xi Nt
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650 DAVID ARISTOFF AND DANIEL M. ZUCKERMAN

with weights \^\omega 1
t , . . . , \^\omega 

N
t . Thus, weighted ensemble advances in time as follows:

\{ \xi it\} i=1,...,N selection -  -  -  -  - \rightarrow \{ \^\xi it\} i=1,...,N mutation -  -  -  -  -  - \rightarrow \{ \xi it+1\} i=1,...,N ,

\{ \omega i
t\} i=1,...,N selection -  -  -  -  - \rightarrow \{ \^\omega i

t\} i=1,...,N mutation -  -  -  -  -  - \rightarrow \{ \omega i
t+1\} i=1,...,N .

The particles belong to a common standard Borel state space [29]. This state
space is divided into a finite collection \scrB of disjoint subsets (throughout we only
consider measurable sets and functions). We define the bin weights at time t as

\omega t(u) =
\sum 

i:\xi it\in u

\omega i
t, u \in \scrB ,

where the empty sum is zero (so an unoccupied bin u has \omega t(u) = 0).

For the parent \xi it of
\^\xi jt , we write par(

\^\xi jt ) = \xi it. A child is just a copy of its parent:

par(\^\xi jt ) = \xi it implies \^\xi jt = \xi it.

Each child has a unique parent. Setting the number of children of each parent com-
pletely defines the children, as the choices of the children's indices (the j's in \^\xi jt ) do
not matter. The number of children of \xi it will be written Ci

t :

(3.1) Ci
t = \#\{ j : par(\^\xi jt ) = \xi it\} ,

where \#S = number of elements in a set S.
Recall that Nt(u) is the number of children in bin u at time t. We require that

there is at least one child in each occupied bin, no children in unoccupied bins, and
N total children at each time t. Thus,

(3.2) Nt(u) \geq 1 if \omega t(u) > 0, Nt(u) = 0 if \omega t(u) = 0,
\sum 
u\in \scrB 

Nt(u) = N.

We write \scrF t for the \sigma -algebra generated by the weighted ensemble up to, but not
including, the tth selection step. We will assume the particle allocation is known before
selection. Similarly, we write \^\scrF t for the \sigma -algebra generated by weighted ensemble up
to and including the tth selection step. In detail,

\scrF t = \sigma 
\Bigl( 
(\xi is, \omega 

i
s)

i=1,...,N
0\leq s\leq t , Ns(u)

u\in \scrB 
0\leq s\leq t, (

\^\xi is, \^\omega 
i
s)

i=1,...,N
0\leq s\leq t - 1, (C

i
s)

i=1,...,N
0\leq s\leq t - 1

\Bigr) 
,

\^\scrF t = \sigma 
\Bigl( 
(\xi is, \omega 

i
s)

i=1,...,N
0\leq s\leq t , Ns(u)

u\in \scrB 
0\leq s\leq t, (

\^\xi is, \^\omega 
i
s)

i=1,...,N
0\leq s\leq t , (Ci

s)
i=1,...,N
0\leq s\leq t

\Bigr) 
.

In Algorithm 3.1, we do not explicitly say how we sample the Nt(u) children in
each bin u. Our framework below allows for any unbiased resampling scheme. We
give a selection variance formula that assumes residual resampling; see Lemma 3.5
and Algorithm 8.1. Residual resampling has performance on par with other standard
resampling methods like systematic and stratified resampling [26]. See [57] for more
details on resampling in the context of sequential Monte Carlo.

3.1. Ergodic averages. We are interested in using Algorithm 3.1 to estimate

\theta T \approx 
\int 

f d\mu ,
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OPTIMIZING WEIGHTED ENSEMBLE SAMPLING 651

Algorithm 3.1 Weighted ensemble.

Pick initial parents and weights (\xi i0, \omega 
i
0)

i=1,...,Ninit with
\sum Ninit

i=1 \omega i
0 = 1, choose a col-

lection \scrB of bins, and define a final time T . Then for t \geq 0, iterate the following:

\bullet (Selection step) Each parent \xi it is assigned a number Ci
t of children, as follows:

In each occupied bin u \in \scrB , conditional on \scrF t, let (C
i
t)

i:bin(\xi it)=u be Nt(u) samples
from the distribution \{ \omega i

t/\omega t(u) : \xi it \in u\} , where Nt(u)
u\in \scrB satisfies (3.2). The

children (\^\xi it)
i=1,...,N are defined by (3.1) with weights

(3.3) \^\omega i
t =

\omega t(u)

Nt(u)
if \^\xi it \in u.

Selections in distinct bins are conditionally independent.

\bullet (Mutation step) Each child \^\xi it independently evolves one time step as follows.

Conditionally on \^\scrF t, the children (\^\xi it)
i=1,...,N evolve independently according to

the Markov kernel K, becoming the next parents (\xi it+1)
i=1,...,N , with weights

(3.4) \omega i
t+1 = \^\omega i

t, i = 1, . . . , N.

Then time advances, t\leftarrow t+ 1. Stop if t = T , else return to the selection step.
Algorithm 5.1 outlines an optimization for the allocation Nt(u)

u\in \scrB , and a procedure
for choosing the bins \scrB is in Algorithm 5.2. For the initialization, see Algorithm 5.3.

where we recall \mu is the stationary distribution of the Markov kernel K, and

(3.5) \theta T =
1

T

T - 1\sum 
t=0

N\sum 
i=1

\omega i
tf(\xi 

i
t).

Note that \theta T is simply the running average of f over the weighted ensemble up to
time T  - 1. In particular, (3.5) is not a time average over ancestral lines that survive
up to time T  - 1, but rather it is an average over the weighted ensemble at each time
0 \leq t \leq T  - 1. Our time averages (3.5) require no replica storage and should have
smaller variances than averages over surviving ancestral lines [4].

3.2. Consistency results. The next results, from a companion article [4], show
that weighted ensemble is unbiased and that weighted ensemble time averages con-
verge. The latter does not in general follow from the former, as standard unbiased
particle methods such as sequential Monte Carlo can have variance explosion [4]. (The
proofs in [4] have Ninit = N , but they are easily modified for Ninit \not = N .)

Theorem 3.1 (from [4]). In Algorithm 3.1, suppose that the initial particles and
weights are distributed as \nu , in the sense that

(3.6) \BbbE 

\Biggl[ 
Ninit\sum 
i=1

\omega i
0g(\xi 

i
0)

\Biggr] 
=

\int 
g d\nu 

for all real-valued bounded functions g on state space. Let (\xi t)t\geq 0 be a Markov chain
with kernel K and initial distribution \xi 0 \sim \nu . Then for any time T > 0,

\BbbE 

\Biggl[ 
N\sum 
i=1

\omega i
T g(\xi 

i
T )

\Biggr] 
= \BbbE [g(\xi T )]

for all real-valued bounded functions g on state space.
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652 DAVID ARISTOFF AND DANIEL M. ZUCKERMAN

Recall we assume K is uniformly geometrically ergodic [27].

Theorem 3.2 (from [4]). Weighted ensemble is ergodic in the following sense:

lim
T\rightarrow \infty 

\theta T
a.s.
=

\int 
f d\mu .

Theorem 3.1 does not use ergodicity of K, though Theorem 3.2 obviously does.

3.3. Variance analysis. We will make use of the following analysis from [4]
concerning the weighted ensemble variance. Define the Doob martingales [25]

(3.7) Dt = \BbbE [\theta T | \scrF t], \^Dt = \BbbE [\theta T | \^\scrF t].

The Doob decomposition in Theorem 3.3 below filters the variance through the \sigma -
algebras \scrF t and \^\scrF t. It is a way to decompose the variance into contributions from the
initial condition and each time step. This type of telescopic variance decomposition is
quite standard in sequential Monte Carlo, although it is usually applied at the level of
measures on state space, which corresponds to the infinite particle limit N \rightarrow \infty [19].
We use the finite N formula directly to minimize variance, building on ideas in [5].

Theorem 3.3 (from [4]). By Doob decomposition,

\theta 2T  - \BbbE [\theta T ]2 +RT = (D0  - \BbbE [\theta T ])2(3.8)

+

T - 1\sum 
t=1

\BbbE 
\biggl[ \Bigl( 

Dt  - \^Dt - 1

\Bigr) 2\bigm| \bigm| \bigm| \bigm| \^\scrF t - 1

\biggr] 
(3.9)

+

T - 1\sum 
t=1

\BbbE 
\biggl[ \Bigl( 

\^Dt - 1  - Dt - 1

\Bigr) 2\bigm| \bigm| \bigm| \bigm| \scrF t - 1

\biggr] 
,(3.10)

where RT is mean zero, \BbbE [RT ] = 0.

The terms on the right-hand side of (3.8), (3.9), and (3.10) yield the contributions
to the variance of \theta T from, respectively, the initial condition, mutation steps, and
selection steps of Algorithm 3.1. We thus refer to the summands of (3.9) and (3.10)
as the mutation variance and selection variance of weighted ensemble.

Below, define

(3.11) ht =

T - t - 1\sum 
s=0

Ksf,

and for any function g and probability distribution \eta on state space, let

(3.12) Var\eta g :=

\int 
g2(\xi )\eta (d\xi ) - 

\biggl( \int 
g(\xi )\eta (d\xi )

\biggr) 2

.

Above and below, the dependence of Dt, \^Dt, and ht on T is suppressed.

Lemma 3.4 (from [4]). The mutation variance at time t is

\BbbE 
\biggl[ \Bigl( 

Dt+1  - \^Dt

\Bigr) 2\bigm| \bigm| \bigm| \bigm| \^\scrF t

\biggr] 
=

1

T 2

N\sum 
i=1

\bigl( 
\^\omega i
t

\bigr) 2
VarK(\^\xi it,\cdot )

ht+1.(3.13)
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To formulate the selection variance, we define

\delta it =
Nt(u)\omega 

i
t

\omega t(u)
 - 
\biggl\lfloor 
Nt(u)\omega 

i
t

\omega t(u)

\biggr\rfloor 
if \xi it \in u, \delta t(u) =

\sum 
i:\xi it\in u

\delta it,

where \lfloor x\rfloor is the floor function, or the greatest integer less than or equal to x. In
Lemma 3.5, we assume that the (Cj

t )
j=1,...,N in Algorithm 3.1 are obtained using

residual resampling. See [26, 57] or Algorithm 8.1 in the appendix below for a de-
scription of residual resampling.

Lemma 3.5 (from [4]). The selection variance at time t is

\BbbE 
\biggl[ \Bigl( 

\^Dt  - Dt

\Bigr) 2\bigm| \bigm| \bigm| \bigm| \scrF t

\biggr] 
=

1

T 2

\sum 
u\in \scrB 

\biggl( 
\omega t(u)

Nt(u)

\biggr) 2

\delta t(u)Var\eta t(u)Kht+1,

\eta t(u) :=
\sum 

i:bin(\xi it)=u

\delta it
\delta t(u)

\delta \xi it .

(3.14)

By definition (3.12), the variances in Lemmas 3.4 and 3.5 are rewritten as

VarK(\^\xi it,\cdot )
ht+1 = Kh2

t+1(
\^\xi it) - (Kht+1(\^\xi 

i
t))

2,

Var\eta t(u)Kht+1 =
\sum 

i:bin(\xi it)=u

\delta it
\delta t(u)

(Kht+1(\xi 
i
t))

2  - 

\left(  \sum 
i:bin(\xi it)=u

\delta it
\delta t(u)

Kht+1(\xi 
i
t)

\right)  2

.

3.4. Poisson equation. Because we are interested in large time horizons T ,
below we will consider the mutation and selection variances in the limit T \rightarrow \infty . We
will see that for any probability distribution \eta on state space,

lim
T\rightarrow \infty 

Var\eta ht+1 = Var\eta h,

lim
T\rightarrow \infty 

Var\eta Kht+1 = Var\eta Kh,

where h is the solution to the Poisson equation [40, 44]

(3.15) (Id - K)h = f  - 
\int 

f d\mu ,

\int 
h d\mu = 0,

where Id = the identity kernel. Existence and uniqueness of the solution h easily
follow from uniform geometric ergodicity of the Markov kernel K. Indeed, if (\xi t)t\geq 0

is a Markov chain with kernel K, then we can write

h(\xi ) =

\infty \sum 
t=0

\biggl( 
Ktf(\xi ) - 

\int 
f d\mu 

\biggr) 

=

\infty \sum 
t=0

(\BbbE [f(\xi t)| \xi 0 = \xi ] - \BbbE [f(\xi t)| \xi 0 \sim \mu ]) ,

(3.16)

where \xi 0 \sim \mu indicates \xi 0 is initially distributed according to the steady state \mu of K.
Uniform geometric ergodicity and the WeierstrassM -test show that the sums in (3.16)
converge absolutely and uniformly. As a consequence, h in (3.16) solves (3.15).
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654 DAVID ARISTOFF AND DANIEL M. ZUCKERMAN

Interpreting (3.16), h(\xi ) is the mean discrepancy of a time average of f(\xi t) starting
at \xi 0 = \xi with a time average of f(\xi t) starting at steady state \xi 0 \sim \mu . This discrepancy
in the time averages has been normalized so that it has a nontrivial limit and, in
particular, does not vanish, as time goes to infinity.

The Poisson solution h is critical for understanding and estimating the weighted
ensemble variance. Besides, h can be used to identify model features, such as sets
that are metastable for the underlying Markov chain defined by K, as well as narrow
pathways between these sets. Metastable sets are, roughly speaking, regions of state
space in which the Markov chain tends to become trapped.

To understand the behavior of h, we define metastable sets more precisely. A
region R in state space is metastable for K if (\xi t)t\geq 0 tends to equilibrate in R much
faster than it escapes from R. The rate of equilibration in R can be understood in
terms of the quasi-stationary distribution [14] in R. See, e.g., [39] for more discussion
on metastablity. The Poisson solution h tends to be nearly constant in regions that
are metastable for K. This is because the mean discrepancy in a time average of
f(\xi t) over two copies of (\xi t)t\geq 0 with different starting points in the same metastable
set R is small: both copies tend to reach the same quasi-stationary distribution in R
before escaping from R. In the regions between metastable sets, however, h tends to
have large variance. If f is a characteristic or indicator function, this variance tends
to be larger the closer these regions are to the support of f (the set where f = 1).
More generally, the variance of h is larger near regions R where the stationary average\int 
R
f d\mu of f is large. See Figure 6.1 for an illustration of these features.

4. Minimizing the variance. Our strategy for minimizing the variance is based
on choosing the particle allocation to minimize mutation variance and picking the bins
to mitigate selection variance. Minimizing mutation variance is closely connected with
minimizing a certain sensitivity; see the appendix below. Both strategies require some
coarse estimates of K and h. We propose using ideas from Markov state modeling to
construct microbins from which we estimate K,h. The microbins can be significantly
smaller than the weighted ensemble bins, as we discuss below.

4.1. Resampling times. Recall that weighted ensemble is fully characterized
by the choice of resampling times, bins, and particle allocation. Though we focus
on the latter two here, we briefly comment on the former. The resampling times are
implicit in our framework. We assume here that K = K\Delta t is a \Delta t-skeleton of an
underlying Markov process, or a sequence of values of the underlying process at time
intervals \Delta t. In this setup, \Delta t is a fixed resampling time, and we are ignoring the
time discretization. (Actually, the resampling times need not be fixed---they can be
any times at which the underyling process has the strong Markov property [5]. In
practice, the underlying process must be discretized in time, and weighted ensemble
is used with the discretized process.)

Suppose that the underlying Markov process is one of the ones mentioned in the
introduction: either Langevin dynamics, or a reaction network modeled by a contin-
uous time Markov chain on finite state space. Suppose, moreover, that microbins in
continuous state space are domains with piecewise smooth boundaries (for instance,
Voronoi regions), and that the bins are unions of microbins. Then the underlying
process does not cross between distinct microbins, or between distinct bins, infinitely
often in finite time. As a result, weighted ensemble should not degenerate in the limit
as \Delta t\rightarrow 0, as we now show.

Consider the variance from selection in Lemma 3.5. By (3.3), the weights of all
the children in each bin u \in \scrB are all equal to \omega t(u)/Nt(u) after the selection step.
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If \Delta t is very small, then almost none of the children move to different microbins
or bins in the mutation step. If exactly zero of the children change bins, then for
residual resampling in the selection step at the next time t, provided the allocation
Nt(u)

u\in \scrB has not changed, we have \delta it = 0 for all i = 1, . . . , N . (Note that with our
optimal allocation strategy in Algorithm 5.1, if we avoid unnecessary resampling of
Rt(u)

u\in \scrB , then Nt(u)
u\in \scrB does not change unless particles move between microbins.)

Thus from Lemma 3.5 there is zero selection variance and, in fact, no resampling
occurs in the selection step. Provided particles do not cross bins or microbins infinitely
often in finite time, and the allocation only changes when particles move between
microbins, this suggests there is no variance blowup when \Delta t \rightarrow 0. We expect then
that the frequency \Delta t of resampling should be driven not by variance cost but by
computational cost, e.g., processor communication cost.

4.2. Minimizing mutation variance. The mutation variance depends on the
choice of weighted ensemble bins as well as the particle allocation at each time t. In
this section we focus on the particle allocation for an arbitrary choice \scrB of bins. To
understand this relationship between the allocation and mutation variance, following
ideas from [5], we look at the mutation variance visible before selection. It is so named
because, unlike the mutation variance in Lemma 3.4, it is a function of quantities
\omega t(u), Nt(u), (\omega 

i
t, \xi 

i
t)

i=1,...,N that are known at time t before selection.

Proposition 4.1. The mutation variance visible before selection satisfies

lim
T\rightarrow \infty 

T 2\BbbE 
\biggl[ \Bigl( 

Dt+1  - \^Dt

\Bigr) 2\bigm| \bigm| \bigm| \bigm| \scrF t

\biggr] 
=
\sum 
u\in \scrB 

\omega t(u)

Nt(u)

\sum 
i:\xi it\in u

\omega i
tVarK(\xi it,\cdot )h,

where h is defined in (3.15).

Proof. By definition of the selection step (see Algorithm 3.1),

(4.1) \BbbE [Ci
t | \scrF t] =

Nt(u)\omega 
i
t

\omega t(u)
.

From Lemma 3.4,

T 2\BbbE 
\biggl[ \Bigl( 

Dt+1  - \^Dt

\Bigr) 2\bigm| \bigm| \bigm| \bigm| \scrF t

\biggr] 
= \BbbE 

\Biggl[ 
N\sum 
i=1

(\^\omega i
t)

2VarK(\^\xi it,\cdot )
ht+1

\bigm| \bigm| \bigm| \bigm| \bigm| \scrF t

\Biggr] 

=
\sum 
u\in \scrB 

\biggl( 
\omega t(u)

Nt(u)

\biggr) 2

\BbbE 

\left[  \sum 
i:\^\xi it\in u

VarK(\^\xi it,\cdot )
ht+1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \scrF t

\right]  (using (3.3))

=
\sum 
u\in \scrB 

\biggl( 
\omega t(u)

Nt(u)

\biggr) 2 \sum 
i:\xi it\in u

\BbbE 

\left[  \sum 
j:par(\^\xi jt )=\xi it

[Kh2
t+1(

\^\xi jt ) - (Kht+1(\^\xi 
j
t ))

2]

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \scrF t

\right]  
=
\sum 
u\in \scrB 

\omega t(u)

Nt(u)

\sum 
i:\xi it\in u

\omega i
t[Kh2

t+1(\xi 
i
t) - (Kht+1(\xi 

i
t))

2] (using (4.1)).

(4.2)

In light of (3.11) and (3.16), and using the fact that

VarK(\xi it,\cdot )h = Kh2(\xi it) - (Kh(\xi it))
2,

we get the result from letting T \rightarrow \infty .
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We let T \rightarrow \infty since we are interested in long-time averages. The simpler formu-
las that result, as the involve h instead of ht, allow for strategies to estimate fixed
optimal bins before beginning weighted ensemble simulations, which we discuss more
below. Thus for minimizing the limiting mutation variance, we consider the following
optimization:

minimize
\sum 
u\in \scrB 

\omega t(u)

Nt(u)

\sum 
i:\xi it\in u

\omega i
tVarK(\xi it,\cdot )h,

over all choices of Nt(u) \in \BbbR + such that
\sum 
u\in \scrB 

Nt(u) = N,

(4.3)

where the bins \scrB are fixed, and we temporarily allow the allocation Nt(u)
u\in \scrB to be

noninteger. A Lagrange multiplier calculation shows that the solution to (4.3) is

(4.4) Nt(u) =
N
\sqrt{} 

\omega t(u)
\sum 

i:\xi it\in u \omega 
i
tVarK(\xi it,\cdot )h\sum 

u\in \scrB 

\sqrt{} 
\omega t(u)

\sum 
i:\xi it\in u \omega 

i
tVarK(\xi it,\cdot )h

,

provided the denominator above is nonzero. Note this solution is idealized, as Nt(u)
must always be an integer, and h and K are not known exactly. We explain a practical
implementation of (4.4) in Algorithm 5.1.

Our choice of the particle allocation will be based on (4.4); see Algorithm 5.1. No-
tice that at each time t we only minimize one term, the summand in (3.9) correspond-
ing to the mutation variance at time t in the Doob decomposition in Theorem 3.3.
Later, when we optimize bins, we will optimize the summand in (3.10) corresponding
to the selection variance at time t. In particular, we only minimize the mutation and
selection variances at the current time, and not the sum of these variances over all
times. In the T \rightarrow \infty limit, we expect that weighted ensemble reaches a steady state,
provided the bin choice and allocation strategy (e.g., from Algorithms 5.1 and 5.2)
do not change over time. If the weighted ensemble indeed reaches a steady state,
then the mutation and selection variances become stationary in t, making it reason-
able to minimize them only at the current time. (Under appropriate conditions, the
variances in (3.9)--(3.10) should also become independent over time t in the N \rightarrow \infty 
limit. See [19] for related results in the context of sequential Monte Carlo.)

Note the term VarK(\xi it,\cdot )h = Kh2(\xi it)  - (Kh(\xi it))
2 appearing in (4.4). As dis-

cussed in section 3, this variance tends to be large in regions between metastable sets.
The optimal allocation (4.4) favors putting children in such regions, increasing the
likelihood that their descendants will visit both the adjacent metastable sets. See the
appendix for a connection between minimizing mutation variance and minimizing the
sensitivity of the stationary distribution \mu to perturbations of K.

4.3. Mitigating selection variance. We begin by observing that if bins are
small, then so is the selection variance. In particular, if each bin is a single point
in state space, then Lemma 3.5 shows that the selection variance is zero. One way,
then, to get small selection variance is to have a lot of bins. When simulations of
the underlying Markov chain are very expensive, however, we cannot afford a large
number of bins; see Remark 5.1 in section 5 below. As a result the bins are not so
small, and we investigate the selection variance to decide how to construct them.
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Lemma 4.2. The selection variance at time t \geq 1 satisfies

lim
T\rightarrow \infty 

T 2\BbbE 
\biggl[ \Bigl( 

\^Dt  - Dt

\Bigr) 2\bigm| \bigm| \bigm| \bigm| \scrF t

\biggr] 
=
\sum 
u\in \scrB 

\biggl( 
\omega t(u)

Nt(u)

\biggr) 2

\delta t(u)Var\eta t(u)Kh,(4.5)

where \eta t(u) is defined in Lemma 3.5 and h is defined in (3.15).

Proof. From Lemma 3.5, (3.11), and (3.16), letting T \rightarrow \infty gives the result.

We choose to mitigate selection variance by choosing bins so that (4.5) is small.
This likely requires some sort of search in bin space. For simplicity, we assume that
the bins do not change in time and are chosen at the start of Algorithm 3.1. Of course
it is possible to update bins adaptively, at a frequency that depends on how the cost
of bin searches compares to that of particle evolution.

We will minimize an agnostic variant of (4.5), for which we make no assumptions
about Nt(u), \omega t(u), and \delta t(u). This allows us to optimize fixed bins using a time-
independent objective function, without taking the particle allocation into account.
Our agnostic optimization also is not specific to residual resampling. Indeed, though
the precise formula for the selection variance depends on the resampling method,
the selection variance should always contain terms of the form Var\eta Kh, where \eta are
probability distributions in the individual weighted ensemble bins; see [4]. It is exactly
these terms that we choose to minimize.

Thus for our agnostic selection variance minimization, we let

\eta unifu (d\xi ) =
1\xi \in u d\xi \int 
1\xi \in u d\xi 

be the uniform distribution in bin u \in \scrB , and consider the following problem:

minimize
\sum 
u\in \scrB 

Var\eta unif
u

Kh

over choices of \scrB , subject to the constraint \#\scrB = M.

(4.6)

Like (4.3), this is idealized because we cannot directly access K or h. We describe a
practical implementation of (4.6) in Algorithm 5.2. Informally, solutions to (4.6) are
characterized by the property that, inside each individual bin u, the value of Kh does
not change very much.

Our choice of bins is based on (4.6). Here M is the desired total number of bins.
Our agnostic perspective leads us to use the uniform distribution \eta unifu in each bin
u. When bins are formed from combinations of a fixed collection of microbins, (4.6)
is a discrete optimization problem that usually lacks a closed form solution. Algo-
rithm 5.2 below solves a discrete version of (4.6) by simulated annealing. Because of
the similarity of (4.6) with the k-means problem [41], we expect that there are more
efficient methods, but this is not the focus of the present work.

5. Microbins and parameter choice. To approximate the solutions to (4.3)
and (4.6), we use microbins to gain information about K and h. The collection\scrM \scrB 
of microbins is a finite partition of state space that refines the weighted ensemble bins
\scrB , in the sense that every element of \scrB is a union of elements of\scrM \scrB . Thus each bin
is comprised of a number of microbins, and each microbin is inside exactly one bin.
The idea is to use exploratory simulations, over short time horizons, to approximate
K and h by observing transitions between microbins.
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658 DAVID ARISTOFF AND DANIEL M. ZUCKERMAN

In more detail, we estimate the probability to transition from microbin p \in \scrM \scrB 
to microbin q \in \scrM \scrB by a matrix \~K = ( \~Kpq),

(5.1) \~Kpq \approx 
\int \int 

\nu (d\xi )K(\xi , d\xi \prime )1\xi \in p, \xi \prime \in q\int 
\nu (d\xi )1\xi \in p

,

and we estimate f on microbin p \in \scrM \scrB by a vector \~f = ( \~fp),

(5.2) \~fp \approx 
\int 
f(\xi )1\xi \in p \nu (d\xi )\int 
1\xi \in p\nu (d\xi )

.

Here \nu is some convenient measure, for instance an empirical measure obtained from
preliminary weighted ensemble simulations. This strategy echoes work in the Markov
state model community [35, 45, 48, 49].

For small enough microbins, we could replace \nu in (5.1) with any other measure
without changing too much the value of the estimates on the right-hand sides of (5.1)
and (5.2). Moreover, if f is the characteristic function of a microbin, then \nu could
be replaced with any measure supported in microbin p without changing at all the
value of the right-hand side of (5.2). This is the case for the mean first passage time
problem mentioned in the introduction, and fleshed out in the numerical example in
section 6; there, f is the characteristic function of the target set, which can be chosen
to be a microbin.

Algorithm 5.1 Optimizing the particle allocation.

Given the particles and weights (\xi i0, \omega 
i
0)

i=1,...,Ninit at t = 0 or (\xi it, \omega 
i
t)

i=1,...,N at t \geq 1:
\bullet Define the following approximate solution to (4.3):

(5.3) \~Nt(u) =
N
\sqrt{} 

\omega t(u)
\sum 

i:\xi it\in u \omega 
i
t[ \~K

\~h2  - ( \~K\~h)2]p(\xi it)\sum 
u\in \scrB 

\sqrt{} 
\omega t(u)

\sum 
i:\xi it\in u \omega 

i
t[ \~K

\~h2  - ( \~K\~h)2]p(\xi it)

,

where p(\xi it) \in \scrM \scrB is the microbin containing \xi it.
\bullet Let \~N count the occupied bins,

\~N =
\sum 
u\in \scrB 

1\omega t(u)>0.

\bullet Let Rt(u)
u\in \scrB be N  - \~N samples from the distribution \{ \~Nt(u)/N : u \in \scrB \} .

\bullet In Algorithm 3.1, define the particle allocation as

Nt(u) = 1\omega t(u)>0 +Rt(u).

If the denominator of (5.3) is 0, we set Nt(u) = \#\{ i : \xi it \in u\} .

With \~f and the microbin-to-microbin transition matrix \~K in hand, we can obtain
an approximate solution \~h to the Poisson equation (3.15), simply by replacing K, f ,
and \mu in that equation with, respectively, \~K, \~f , and the stationary distribution \~\mu of
\~K (we assume \~K is aperiodic and irreducible). That is, \~h solves

(5.4) (\~I  - \~K)\~h = \~f  - \~fT \~\mu \~1, \~hT \~\mu = 0,
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where \~I and \~1 are the identity matrix and all-ones column vector of the appropriate
sizes, and \~f , \~\mu , and \~h are column vectors. Then we can approximate the solutions
to (4.3) and (4.6) by simply replacing K and h in those optimization problems with \~K
and \~h. See Algorithms 5.1 and 5.2 for details. We can also use \~\mu to initialize weighted
ensemble; see Algorithm 5.3.

Algorithm 5.2 Optimizing the bins.

Choose an initial collection \scrB of bins. Define an objective function on the bin space,

(5.5) \scrO (\scrB \prime ) =
\sum 
u\in \scrB \prime 

Var( \~K\~h| u),

where \~K\~h| u is the restriction of \~K\~h to \{ p \in \scrM \scrB : p \in u\} , and Var( \~K\~h| u) is the usual
vector population variance. Choose an annealing parameter \alpha > 0, set \scrB opt = \scrB , and
iterate the following for a user-prescribed number of steps:

1. Perturb \scrB to get new bins \scrB \prime .
(Say by moving a microbin from one bin to another bin.)

2. With probability min\{ 1, exp[\alpha (\scrO (\scrB ) - \scrO (\scrB \prime ))]\} , set \scrB = \scrB \prime .
3. If \scrO (\scrB ) < \scrO (\scrB opt), then update \scrB opt = \scrB . Return to step 1.

Once the bin search is complete, the output is \scrB = \scrB opt.

We have in mind that the microbins are constructed using ideas from Markov state
modeling [35, 45, 48, 49]. In this setup, the microbins are simply the Markov states.
These could be determined from a clustering analysis (e.g., using k-means [41]) from
preliminary weighted ensemble simulations with short time horizons. The resulting
Markov state model can be crude: it will be used only for choosing parameters, and
weighted ensemble is exact no matter the parameters. Indeed if our Markov state
model was very refined, it could be used directly to estimate

\int 
f d\mu . In practice, we

expect our crude model could estimate
\int 
f d\mu with significant bias. In our formulation,

a bad set of parameters may lead to large variance, but there is never any bias.
In short, the Markov state model should be good enough to pick reliable weighted
ensemble parameters, but not necessarily good enough to accurately estimate

\int 
f d\mu .

Remark 5.1. We distinguish microbins from bins because the number of weighted
ensemble bins is limited by the number of particles we can afford to simulate over the
time horizon needed to reach \mu . As an extreme case, suppose we have many more bins
than particles, so that all bins contain 0 or 1 particles at almost every time. Then,
because Algorithm 3.1 requires at least one child per occupied bin, parents almost
never have more than one child, and we recover direct Monte Carlo. This condition,
that the collection of parents in a given bin must have at least one child, is essential
for the stability of long-time calculations [4]. As a result, too many bins leads to poor
weighted ensemble performance. A very rough rule of thumb is that the number M
of bins should be not too much larger than the number N of particles.

The number of weighted ensemble bins is limited by the number N of particles.
(In the references in the introduction, N is usually on the order of 102 to 103.)
The number of microbins, on the other hand, is limited primarily by the cost of the
sampling that produces \~h and \~K. The microbins could be computed by postprocessing
exploratory weighted ensemble data generated using larger bins. The quality of the
microbin-to-microbin transition matrix \~K depends on the microbins and the number
of particles used in these exploratory simulations. But these exploratory simulations,
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compared to our steady-state weighted ensemble simulations, could use more particles
as their time horizons can be much shorter. As a result the number of microbins can
be much greater than the number of bins.

In Algorithm 5.2, we could enforce an additional condition that the bins must be
connected regions in state space. We do this in our implementation of Algorithm 5.2
in section 6 below. Traditionally, bins are connected, not-too-elongated regions, e.g.,
Voronoi regions. Bins are chosen this way because resampling in bins with distant
particles can lead to a large variance in the weighted ensemble. However, since we
are employing weighted ensemble only to compute

\int 
f d\mu for a single observable f , a

large variance in the full ensemble can be tolerated so long as the variance assocated
with estimating

\int 
f d\mu is still small. This could be achieved with disconnected or

elongated bins, or even a nonspatial assignment of particles to bins (based e.g., on the
values of \~K\~h on the microbins containing the particles). We leave a more complete
investigation to future work.

5.1. Initialization. Note that the steady state \~\mu of \~K can be used to pre-
condition the weighted ensemble simulations, so that they start closer to the true
steady state. This basically amounts to adjusting the weights of the initial particles
so that they match \~\mu . This is called reweighting in the weighted ensemble litera-
ture [8, 15, 51, 64]. One way to do this is the following. Take initial particles and
weights (\xi i0, \omega 

i)i=1,...,Ninit from the preliminary simulations that define \~K, \~\mu , \~f , and
\~h. These initial particles can be a large subsample from these simulations; in par-
ticular we can have an initial number of particles Ninit \gg N much greater than the
number of particles in weighted ensemble simulations. (The large number can be
obtained by sampling at different times along the the preliminary simulation particle
ancestral lines.) We require that there is at least one initial particle in each microbin.
The weights (\omega i)i=1,...,Ninit of these particles are adjusted using \~\mu to get new weights
(\omega i

0)
i=1,...,Ninit , such that the total adjusted weight in each microbin matches the value

of \~\mu on the same microbin. Then these Ninit \gg N initial particles are fed into the
first (t = 0) selection step of Algorithm 3.1. This selection step prunes the number
of particles to a manageable number, N , for the rest of the main weighted ensemble
simulation. See Algorithm 5.3 for a precise description of this initialization.

Algorithm 5.3 Initializing weighted ensemble.

After the preliminary simulations that produce a collection of particles and weights
(\xi i0, \omega 

i)i=1,...,Ninit , together with approximations \~K, \~\mu , \~f , and \~h of K, \mu , f , and h:
\bullet Adjust the weights of the particles in each microbin p according to \~\mu p:

\omega i
0 = \omega i \~\mu p\sum 

j:\xi j0\in p \omega 
j

if \xi i0 \in p.

There should be at least one initial particle in each microbin,\sum 
j:\xi j0\in p

\omega j > 0, p \in \scrM \scrB .

\bullet Proceed to the selection step of Algorithm 3.1 at time t = 0 with the initial
particles \xi 10 , . . . , \xi 

Ninit
0 having the adjusted weights \omega 1

0 , . . . , \omega 
Ninit
0 .

The number, Ninit, of initial particles can be much greater than the number, N , of
particles in the weighted ensemble simulations of Algorithm 3.1.
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5.2. Gain over naive parameter choices. The gain of optimizing parameters,
compared to naive parameter choices or direct Monte Carlo, comes from the larger
number of particles that optimized weighted ensemble puts in important regions of
state space, compared to a naive method. These important regions are exactly the
ones identified by h; roughly speaking they are regions R where the variance of h is
large. A rule of thumb is that the variance can decrease by a factor of up to

(5.6)
average \# of particles in R with optimized parameters

average \# of particles in R with naive method
.

To see why, consider the mutation variance from Proposition 4.1,

lim
T\rightarrow \infty 

T 2\BbbE 
\biggl[ \Bigl( 

Dt+1  - \^Dt

\Bigr) 2\bigm| \bigm| \bigm| \bigm| \scrF t

\biggr] 
=
\sum 
u\in \scrB 

\omega t(u)

Nt(u)

\sum 
i:\xi it\in u

\omega i
tVarK(\xi it,\cdot )h.(5.7)

The contribution to this mutation variance at time t from bin u is

\omega t(u)

Nt(u)

\sum 
i:\xi it\in u

\omega i
tVarK(\xi it,\cdot )h.

Increasing Nt(u) by some factor decreases the mutation variance from bin u at time t
by the same factor. The mutation variance can be reduced by a factor of almost (5.6)
if Nt(u) is increased by the factor (5.6) in the bins u where VarK(\xi it,\cdot )h is large, and
if VarK(\xi it,\cdot )h is small enough in the other bins that decreasing the allocation in those
bins does not significantly increase the mutation variance.

Of course the variance formulas in Lemmas 3.4 and 3.5 can, in principle, more
precisely describe the gain, although it is difficult to accurately estimate the values
of these variances a priori outside of the N \rightarrow \infty limit. Since we focus on relatively
small N , we do not go in this analytic direction. Instead we numerically illustrate the
improvement from optimizing parameters in Figures 6.3 and 6.4.

5.3. Adaptive methods. We have proposed handling the optimizations (4.3)
and (4.6) by approximating K and h with \~K and \~h, where the latter are built by
observing microbin-to-microbin transitions and solving the appropriate Poisson prob-
lem. Since K and h are fixed in time and we are doing long-time calculations, it is
natural to estimate them adaptively, for instance, via stochastic approximation [38].
Thus both (4.3) and (4.6) could be solved adaptively, at least in principle. Depending
on the number of microbins, it may be relatively cheap to compute h compared to
the cost of evolving particles. If this is the case, it is natural to solve (4.3) on the fly.
We could also perform bin searches intermittently, depending on their cost.

6. Numerical illustration. In this section we illustrate the optimizations in
Algorithms 5.1 and 5.2, for a simple example of a mean first passage time computation.
Consider overdamped Langevin dynamics

(6.1) dXt =  - V \prime (Xt) dt+
\sqrt{} 
2\beta  - 1dWt,

where \beta = 5, (Wt)t\geq 0 is a standard Brownian motion, and the potential energy is

V (x) =

\Biggl\{ 
5(x - 7/12)2 + 0.15 cos(240\pi x), x < 7/12,

 - 1 - cos(12\pi x) + 0.15 cos(240\pi x), x \geq 7/12.
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Fig. 6.1. Using Algorithm 5.2 to compute the weighted ensemble bins \scrB when the number of
bins is M = 4. We use 106 iterations of Algorithm 5.2 with \alpha = 105. Top left: Potential energy
V and bin boundaries when M = 4. Top right: The vector \~K\~h defining the objective function in
Algorithm 5.2, where \~h is the approximate Poisson solution. Note that \~K\~h is nearly constant on
each superbasin. Bottom left: (square root of) the vector \~K\~h2  - ( \~K\~h)2 involved in the mutation
variance optimization in Algorithm 5.1. Bottom right: Approximate steady state distribution \~\mu . All
plots have been cropped at x > 0.4, where the values of \~K\~h2  - ( \~K\~h)2 and \~\mu are neglibigle and \~K\~h
is nearly constant.

See Figure 6.1. We impose reflecting boundary conditions on the interval [0, 1]. We
will estimate the mean first passage time of (Xt)t\geq 0 from 1/2 to [119/120, 1] using
the Hill relation [5, 32]. The Hill relation reformulates the mean first passage time as
a steady-state average, as we explain below.

We choose 120 uniformly spaced microbins between 0 and 1:

\scrM \scrB = \{ [(p - 1)/120, p/120] : i = 1, . . . , 120\} .

(They are not actually disjoint, but they do not overlap so this is unimportant.)
The microbins correspond to the basins of attraction of V . A basin of attraction

of V is a set of initial conditions x(0) for which dx(t)/dt =  - V \prime (x(t)) has a unique
long-time limit. The microbins combine to make 3 larger metastable sets, defined in
section 3 above. These larger metastable sets, each comprised of many smaller basins
of attraction, will be called superbasins. The microbins do not need to be basins of
attraction: they only need to be sufficiently ``small"" to give useful estimates of K
and h. We choose microbins in this way to illustrate the qualitative features we
expect from Markov state modeling, where the Markov states (or our microbins) are
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often basins of attraction. In this case, the bins might be clusters of Markov states
corresponding to superbasins.

The kernel K is defined as follows. First, let K\delta t be an Euler--Maruyama time
discretization of (6.1) with time step \delta t = 2\times 10 - 5. We introduce a sink at the target
state [119/120, 1] that recycles at a source x = 1/2 via

\=K\delta t(x, dy) =

\Biggl\{ 
K\delta t(

1
2 , dy), x \in [119/120, 1],

K\delta t(x, dy), x /\in [119/120, 1].

Then we define K as a \Delta t-skeleton of \=K\delta t where \Delta t = 10:

(6.2) K = \=K10
\delta t .

This just means we take 10 Euler--Maruyama [37] time steps in the mutation step
of Algorithm 3.1. The Hill relation [5] shows that, if ( \=Xn)n\geq 0 is a Markov chain with
kernel either K\delta t or \=K\delta t and \=\tau = inf\{ n \geq 0 : \=Xn \in [119/120, 1]\} , then

\BbbE [\=\tau | \=X0 = 1/2] =
1

\mu ([119/120, 1])
,

where \mu is the stationary distribution of K. Thus if \tau = inf\{ t > 0 : Xt \in [119/120, 1]\} ,

\BbbE [\tau | X0 = 1/2] \approx \delta t

\mu ([119/120, 1])
.

By construction \mu ([119/120, 1]) is small (on the order 10 - 7), so it must be estimated
with substantial precision to resolve the mean first passage time.

We will estimate the mean first passage time from x = 1/2 to x \in [119/120, 1],
the latter being the target state and rightmost microbin. Thus, we define f as the
characteristic function of this microbin, f = 1[119/200,1], so that

\theta T \approx 
\int 

f d\mu = \mu ([119/120, 1]).

Weighted ensemble then estimates the mean first passage time via

(6.3) Mean first passage time = \BbbE [\tau | X0 = 1/2] \approx \delta t

\theta T
.

We illustrate Algorithm 3.1 combined with Algorithms 5.1--5.2 in Figures 6.1--6.4.
For Algorithms 5.1 and 5.2, to construct \~K, \~\mu , \~f , and \~h as in section 5, we compute the
matrix \~K using 104 trajectories starting from each microbin's midpoint, and we define
\~f120 = 1, \~fp = 0 for 1 \leq p \leq 119. The pth rows of \~K, \~\mu , \~f , and \~h correspond to the
microbin [(p  - 1)/120, p/120]. In Algorithm 5.2, to simplify visualization we enforce
a condition that the bins must be connected regions. We initialize all our simulations
with Algorithm 5.3, where Ninit = 120, \xi i0 = (i - 1/2)/120, and \omega i = 1/120.

In Figure 6.1, we show the bins resulting from Algorithm 5.2, and plot the terms
\~K\~h and \~K\~h2 - ( \~K\~h)2 appearing in the optimizations in Algorithms 5.1 and 5.2, along
with the approximate steady state \~\mu . Note that the bins resolve the superbasins of
V . In Figure 6.2, we explore what happens when the number M of bins increases in
Algorithm 5.2, finding that the bins begin to resolve the regions between superbasins,
favoring regions closer to the support of f . As M increases, the optimal allocation
leads to particles having more children when they are near the dividing surfaces
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Fig. 6.2. Increasing the value of M in Algorithm 5.2. Plotted are weighted ensemble bins \scrB 
computed using Algorithm 5.2 with M = 4, 8, 12, 16. For each value of M , we use 106 iterations
of Algorithm 5.2, with \alpha tuned between 105 and 106. Note that with increasing M , additional bins
are initially devoted to resolving the energy barrier between the two rightmost superbasins. Since
the observable f is the rightmost microbin, this is the most important energy barrier for the bins to
resolve. Note that the multiple adjacent small bins for M = 16 correspond to the steepest gradients
of \~K\~h in the top right of Figure 6.1. All plots have been cropped at x > 0.4.

between the superbasins; to see why, compare the particle allocation in Algorithm 5.1
with the bottom left of Figure 6.1.

In Figure 6.3, we illustrate weighted ensemble with the optimized allocation and
binning of Algorithms 5.1 and 5.2 when the number of bins increases from M = 4 to
M = 16. Observe that M = 4 bins is not enough to resolve the regions between the
superbasins, but we still get a substantial gain over direct Monte Carlo (compare with
Figure 6.4). With M = 16 bins we resolve the regions between superbasins, further
reducing the variance. The bins we use are exactly the ones in Figure 6.2.

In Figure 6.4, we compare weighted ensemble with direct Monte Carlo when M =
4. Direct Monte Carlo can be seen as a version of Algorithm 3.1 where each parent
always has exactly one child, Ci

t = 1 for all t, i. For weighted ensemble, we consider
optimizing either or both of the bins and the allocation. When we do not optimize the
bins, we consider uniform bins \scrB = \{ [0, 40/120], [40/120, 80/120], [80/120, 1]\} . When
we do not optimize the allocation, we consider uniform allocation, where we distribute
particles evenly among the occupied bins, Nt(u) \approx N/\#\{ u \in \scrB : \omega t(u) > 0\} . Notice
the order of magnitude reduction in standard deviation compared with direct Monte
Carlo for this relatively small number of bins.
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Fig. 6.3. Varying the number M of weighted ensemble bins in Algorithm 5.2. Left: Weighted
ensemble running means \theta T versus T for Algorithm 3.1 with the optimal allocation and binning of
Algorithms 5.1 and 5.2, when M = 4, 8, 12, 16. Values shown are averages over 105 independent
trials. Error bars are \sigma T /

\surd 
105, where \sigma T are the empirical standard deviations. Right: Scaled

empirical standard deviations
\surd 
T \times \sigma T versus T in the same setup. We use N = 40 particles, and

the bins correspond exactly to the ones in Figure 6.2. More bins are not always better, since with
too many bins we return to the direct Monte Carlo regime; see Remark 5.1.
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Fig. 6.4. Comparison of direct Monte Carlo with weighted ensemble, where the bins and/or
allocation are optimized, M = 4, and N = 40. Left: Weighted ensemble running means \theta T versus
T for Algorithm 3.1 with the indicated choices for allocation and binning. Values shown are aver-
ages over 105 independent trials. Error bars are \sigma T /

\surd 
105, where \sigma T are the empirical standard

deviations. Right: Scaled empirical standard deviations
\surd 
T \times \sigma T versus T in the same setup. By

optimized bins, we mean the weighted ensemble bins \scrB are chosen using Algorithm 5.2 with M = 4.
These optimized bins are exactly the ones plotted in the top left of Figure 6.2. Optimized allocation
means the particle allocation follows Algorithm 5.1. Uniform bins means that the bins are uniformly
spaced on [0, 1], while uniform allocation means the particles are distributed uniformly among the
occupied bins.
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Fig. 6.5. Illustration of the Hill relation for estimating the mean first passage time via (6.3).
Left: The same data as in Figure 6.3, but \theta T is inverted and multiplied by \delta t to estimate the mean
first passage time, and error bars are adjusted accordingly. Right: The same data as in Figure 6.4,
but \theta T is inverted and multiplied by \delta t to estimate the mean first passage time, and error bars are
adjusted accordingly. So that the x and y axes have the same units, we consider the ``physical time""
on the x-axis, defined as the total number, T , of selection steps of Algorithm 3.1 multiplied by the
time, 10\delta t, between selection steps (see (6.2)). In both plots, the ``exact"" value of the mean first
passage time is obtained from 105 independent samples of the first passage time \=\tau . As in Figures 6.3
and 6.4, optimizing the bins and allocation has the best performance, and M = 16 bins is better than
M = 4, 8, 12 bins, though more bins are not always better; see Remark 5.1.

In Figure 6.5, to illustrate the Hill relation, we plot the weighted ensemble es-
timates of the mean first passage time from our data in Figures 6.3 and 6.4 against
the (numerically) exact value. The weighted ensemble estimates at small T tend to
exhibit a ``bias"" because the weighted ensemble has not yet reached steady state.
As T grows, this bias vanishes and the weighted ensemble estimates converge to the
true mean first passage time. In the simple example in this section, we can directly
compute the mean first passage time. For complicated biological problems, however,
the first passage time can be so large that it is difficult to directly sample even once.
In spite of this, the Hill relation reformulation can lead to useful estimates on much
shorter time scales than the mean first passage time [1, 16, 63]. Indeed this is the case
in Figure 6.5, where we get accurate estimates in a time horizon orders of magnitude
smaller than the mean first passage time. This speedup can be attributed in part to
the initialization in Algorithm 3.1. In general, there can also be substantial speedup
from the Hill relation itself, independently of the initial condition [63].

Optimizing the bins and allocation together has the best performance. We expect
that, as in this numerical example, when the number M of bins is relatively small,
optimizing the bins can be more important than optimizing the allocation. Optimizing
only the allocation may lead to a less dramatic gain when the bins poorly resolve the
landscape defined by h. On the other hand, for a large enough number M of bins it
may be sufficient just to optimize the allocation. We emphasize that more bins is not
always better, since for a fixed number N of particles, with too many bins we end up
recovering direct Monte Carlo. See Remark 5.1 above.
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7. Remarks and future work. This work presents new procedures for choosing
the bins and particle allocation for weighted ensemble, building in part from ideas
in [5]. The bins and particle allocation, together with the resampling times, completely
characterize the method. Though we do not try to optimize the latter, we argue that
there is no significant variance cost associated with taking small resampling times.
Optimizing weighted ensemble is worthwhile when the optimized parameter choices
lead to significantly more particles in important regions of state space, compared to
a naive method. The corresponding gain, represented by the rule of thumb (5.6), can
be expected to grow as the dimension increases. This is because in high dimensions,
the pathways between metastable sets are narrow compared to the vast state space
(see [58, 59] and the references in the introduction).

Though our interest is in steady-state calculations, many of our ideas could just as
well be applied to a finite time setup. Our practical interest in steady state arises from
the computation of mean first passage times via the Hill relation. On the mathemat-
ical side, general importance sampling particle methods with the unbiased property
of Theorem 3.1 are often not appropriate for steady-state sampling. (By general
methods, we mean methods for nonreversible Markov chains, or Markov chains with
a steady state that is not known up to a normalization factor [40].) Indeed as we
explain in our companion article [4], standard sequential Monte Carlo methods can
suffer from variance explosion at large times, even for carefully designed resampling
steps. So this article could be an important advance in that direction.

We conclude by discussing some open problems. The implementation of the algo-
rithms in this article to complex, high dimensional problems will require substantial
effort and modification to the software in [65]. The aim of this article is to lay the
groundwork for such applications. On a more theoretical note, there remain some
questions regarding parameter optimization. We could consider adaptive/nonspatial
bins instead of fixed bins as in Algorithm 5.2, for instance, bins chosen via k-means
on the values of Kh of the N particles. Also, we choose a number M of weighted en-
semble bins and number N of particles a priori. It remains open how to pick the best
value of M for a given number, N , of particles, and fixed computational resources.
Using only the variance analysis above, a straightforward answer to this question can
probably only be obtained in the large N asymptotic regime. More analysis is then
needed, since we generally have small N . We could also optimize over both N and M ,
or over N , M , and a total number S of independent simulations, subject to a fixed
computational budget. We leave these questions to future work.

8. Appendix. In this appendix, we describe residual resampling, and we draw
a connection between mutation variance minimization and sensitivity.

8.1. Residual resampling. Recall that in Algorithm 3.1 we assumed residual
resampling is used to get the number of children (Cj

t )
j=1,...,N of each particle \xi jt at each

time t. We could also use residual resampling to compute Rt(u)
u\in \scrB in Algorithm 5.1.

For the reader's convenience, we describe residual resampling in Algorithm 8.1. Recall
\lfloor x\rfloor is the floor function (the greatest integer \leq x).

8.2. Intuition behind mutation variance minimization. The goal of this
section is to give some intuition for the strategy (4.4), which chooses the particle
allocation to minimize mutation variance, by introducing a connection with sensitivity
of the stationary distribution \mu to perturbations of K. In this section we make the
simplifying assumption that state space is finite, and each point of state space is a
microbin. Thus K = (Kpq)p,q\in \scrM \scrB is a finite stochastic matrix. The Poisson solution
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Algorithm 8.1 Residual resampling.

To generate n samples \{ Ni : i \in \scrI \} from a distribution \{ di : i \in \scrI \} with
\sum 

i\in \scrI di = 1:
\bullet Define \delta i = ndi  - \lfloor ndi\rfloor and let \delta =

\sum 
i\in \scrI \delta i.

\bullet Sample \{ Ri : i \in \scrI \} from the multinomial distribution with \delta trials and event
probabilities \delta i/\delta , i \in \scrI . In detail,

\BbbP (Ri = ri, i \in \scrI ) = 1
\sum 

i\in \scrI ri=\delta 
\delta !\prod 

i\in \scrI ri!

\prod 
i\in \scrI 

(\delta i/\delta )
ri .

\bullet Define Ni = \lfloor ndi\rfloor +Ri, i \in \scrI .

h defined in (3.15) satisfies (I  - K)h = f  - (fT\mu )1 and hT\mu = 0, or equivalently

(8.1) h =

\infty \sum 
s=0

Ks \=f, \=f = f  - (fT\mu )1,

where h = (hp)p\in \scrM \scrB , f = (fp)p\in \scrM \scrB , \=f = ( \=fp)p\in \scrM \scrB , and \mu = (\mu p)p\in \scrM \scrB are column
vectors, and 1 =

\sum 
p\in \scrM \scrB ep is the all-ones column vector. Here, I is the identity

matrix, and (ep)p\in \scrM \scrB is the column vector with 1 in the pth entry and 0's elsewhere.
We write \mu (Q) for the stationary distribution of an irreducible stochastic ma-

trix Q = (Qpq)p,q\in \scrM \scrB . More precisely, \mu (Q) denotes a continuously differentiable
extension of Q \mapsto \rightarrow \mu (Q) to an open neighborhood of the space of \#\scrM \scrB \times \#\scrM \scrB 
irreducible stochastic matrices which satisfies \mu (Q)TQ = \mu (Q)T and \mu (Q)T1 = 1
whenever Q1 = 1. See [52] for details and a proof of existence of this extension.
Abusing notation, we still write \mu with no matrix argument to denote the stationary
distribution \mu (K) of K.

Theorem 8.1. Let \lambda (u) > 0 be such that
\sum 

u\in \scrB \lambda (u) = 1. For each u \in \scrB , let
\nu (u) = (\nu (u)p)p\in \scrM \scrB be a vector satisfying \nu (u)p \geq 0 for p \in \scrM \scrB , \nu (u)p = 0 for
p /\in u, and

\sum 
p\in u \nu (u)p = 1. Let A(u) be a random matrix with the distribution

(8.2) \BbbP 
\bigl( 
A(u) = epe

T
q  - epe

T
p K
\bigr) 
= \nu (u)pKpq if p \in u, q \in \scrM \scrB .

Let A(u)(n) be independent copies of A for u \in \scrB and n = 1, 2, . . . . Define

(8.3) B(N) =
\surd 
N
\sum 
u\in \scrB 

1

\lfloor N\lambda (u)\rfloor 

\lfloor N\lambda (u)\rfloor \sum 
n=1

A(u)(n).

Then

lim
N\rightarrow \infty 

\BbbE 

\Biggl[ \biggl( 
d

d\epsilon 
\mu (K + \epsilon B(N))T

\bigm| \bigm| \bigm| \bigm| 
\epsilon =0

f

\biggr) 2
\Biggr] 

=
\sum 
u\in \scrB 

\lambda (u) - 1
\sum 
p\in u

\nu (u)p\mu 
2
p

\bigl[ 
(Kh2)p  - (Kh)2p

\bigr] 
.

(8.4)

We now interpret Theorem 8.1 from the point of view of particle allocation. Note
that A(u) is a centered sample of of K obtained by picking a microbin p \in u according
to the distribution \nu (u), and then simulating a transition from p via K. By a centered
sample, we mean that we adjust A(u) by subtracting by its mean, so that A(u) has
mean zero. The mean of [(d/d\epsilon )\mu (K + \epsilon A(u))T | \epsilon =0f ]

2 measures the sensitivity of
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f d\mu = fT\mu to sampling from bin u according to the distribution \nu (u). Similarly, the

mean of [(d/d\epsilon )\mu (K+\epsilon B(N))T | \epsilon =0f ]
2 measures the sensitivity of

\int 
f d\mu corresponding

to sampling from each bin u \in \scrB exactly \lfloor N\lambda (u)\rfloor times according to the distributions
\nu (u). Appropriately normalizing the latter in the limit N \rightarrow \infty leads to (8.4). The
sensitivity in (8.4) is minimized over \lambda (u)u\in \scrB when

(8.5) N\lambda (u) =
N
\sqrt{} \sum 

p\in u \nu (u)p\mu 
2
p

\bigl[ 
(Kh2)p  - (Kh)2p

\bigr] 
\sum 

u\in \scrB 

\sqrt{} \sum 
p\in u \nu (u)p\mu 

2
p

\bigl[ 
(Kh2)p  - (Kh)2p

\bigr] .
In light of the discussion above, we think of N\lambda (u)u\in \scrB in (8.5) as a particle allo-

cation. Note that this resembles our formula (4.4) for the optimal weighted ensemble
particle allocation. We now try to make a connection between (4.4) and (8.5).

We first consider a simple case. Suppose the bins are equal to the microbins,
\scrM \scrB = \scrB . Since we assume here that every point in state space is a microbin, this
means that every point of state space is also a bin. In particular the distributions
\nu (u) are trivial: \nu (u)p = 1 whenever p \in \scrM \scrB with p = u. To make (8.5) agree
with (4.4), we need \mu p = \omega t(u) when p = u. Of course this equality does not hold.
It is true that \mu p \approx \omega t(u) when p = u is a reasonable approximation, but only in the
asymptotic where N, t \rightarrow \infty . To see why this is so, note that the unbiased property
and ergodicity show that limt\rightarrow \infty \BbbE [\omega t(u)] = \mu p when p = u; provided an appropriate
law of large numbers also holds, limt\rightarrow \infty limN\rightarrow \infty \omega t(u) = \mu p. Recall, though, that we
are interested in relatively small N , due to the high cost of particle evolution.

For the general case, where \scrM \scrB \not = \scrB and bins contain multiple points in state
space, we see no direct connection between the allocation formulas (8.5) and (4.4).
Indeed, to make an analogy between this sensitivity calculation and weighted en-
semble, we should have \nu (u)p =

\sum 
i:\xi it\in p \omega 

i
t/\omega t(u). Or in other words, we should

consider perturbations that correspond to sampling from the bins according to parti-
cle weights, in accordance with Algorithm 3.1. But putting \nu (u)p =

\sum 
i:\xi it\in p \omega 

i
t/\omega t(u)

in (8.5) gives something quite different from (4.4). So while the sensitivity mini-
mization formula (8.5) is qualitatively similar to our mutation variance minimization
formula (4.4), the two are not actually the same.

8.3. Proof of Theorem 8.1. We begin by noting the following.

(8.6) If vT1 = 0, then gT (I  - K) = vT , gT1 = 0 \Leftarrow \Rightarrow gT =

\infty \sum 
s=0

vTKs.

Like (8.1), this follows from the ergodicity of K. See, for instance, [31].

Lemma 8.2. Suppose A is a matrix with A1 = 0. Then

d

d\epsilon 
\mu (K + \epsilon A)

\bigm| \bigm| \bigm| \bigm| 
\epsilon =0

f = \mu TAh.

Proof. Since \mu (K + \epsilon A)T (K + \epsilon A) = \mu (K + \epsilon A)T , we have

0 =
d

d\epsilon 
\mu (K + \epsilon A)T (I  - K  - \epsilon A)

\bigm| \bigm| \bigm| \bigm| 
\epsilon =0

=
d

d\epsilon 
\mu (K + \epsilon A)T

\bigm| \bigm| \bigm| \bigm| 
\epsilon =0

(I  - K) - \mu TA.

Thus

(8.7)
d

d\epsilon 
\mu (K + \epsilon A)T

\bigm| \bigm| \bigm| \bigm| 
\epsilon =0

(I  - K) = \mu TA.
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Moreover since \mu (Q)T1 = 1 for any stochastic matrix Q,

(8.8) 0 =
d

d\epsilon 
\mu (K + \epsilon A)T1

\bigm| \bigm| \bigm| \bigm| 
\epsilon =0

=
d

d\epsilon 
\mu (K + \epsilon A)T

\bigm| \bigm| \bigm| \bigm| 
\epsilon =0

1.

Now by (8.1), (8.6), (8.7), and (8.8),

d

d\epsilon 
\mu (K + \epsilon A)T

\bigm| \bigm| \bigm| \bigm| 
\epsilon =0

f =

\infty \sum 
s=0

\mu TAKsf

= \mu TA

\infty \sum 
s=0

Ks \=f = \mu TAh,

where the last line above uses AKs
1 = A1 = 0 to replace f with \=f = f  - \mu T f1.

Lemma 8.3. Suppose (A(n))n=1,...,N are matrices such that (i) (A(n))n=1,...,N are
independent over n, (ii) A(n)

1 = 0 for all n, and (iii) \BbbE [A(n)] = 0 for all n. Then

\BbbE 

\left[   
\left(  d

d\epsilon 
\mu 

\Biggl( 
K + \epsilon 

N\sum 
n=1

A(n)

\Biggr) T
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\epsilon =0

f

\right)  2
\right]   =

N\sum 
n=1

\BbbE 

\Biggl[ \biggl( 
d

d\epsilon 
\mu 
\Bigl( 
K + \epsilon A(n)

\Bigr) T \bigm| \bigm| \bigm| \bigm| 
\epsilon =0

f

\biggr) 2
\Biggr] 
.

Proof. Since \mu is continuously differentiable,

(8.9)
d

d\epsilon 
\mu 

\Biggl( 
K + \epsilon 

N\sum 
n=1

A(n)

\Biggr) T
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\epsilon =0

f =

N\sum 
n=1

d

d\epsilon 
\mu 
\Bigl( 
K + \epsilon A(n)

\Bigr) T \bigm| \bigm| \bigm| \bigm| 
\epsilon =0

f.

By (ii)--(iii) and Lemma 8.2, \BbbE 
\Bigl[ 

d
d\epsilon \mu 

\bigl( 
K + \epsilon A(n)

\bigr) T \bigm| \bigm| \bigm| 
\epsilon =0

f
\Bigr] 
= 0 for all n. So by (i),

(8.10) \BbbE 
\biggl[ 
d

d\epsilon 
\mu 
\Bigl( 
K + \epsilon A(n)

\Bigr) T \bigm| \bigm| \bigm| \bigm| 
\epsilon =0

f
d

d\epsilon 
\mu 
\Bigl( 
K + \epsilon A(m)

\Bigr) T \bigm| \bigm| \bigm| \bigm| 
\epsilon =0

f

\biggr] 
= 0 if n \not = m.

The result follows by combining (8.9) and (8.10).

Lemma 8.4. Let A(u) be a random matrix with the distribution (8.2). Then

\BbbE 

\Biggl[ \biggl( 
d

d\epsilon 
\mu (K + \epsilon A(u))T

\bigm| \bigm| \bigm| \bigm| 
\epsilon =0

f

\biggr) 2
\Biggr] 
=
\sum 
p\in u

\nu (u)p\mu 
2
p

\bigl[ 
(Kh2)p  - (Kh)2p

\bigr] 
.

Proof. Note that A(u)1 = (epe
T
q  - epeTp K)1 = 0 since K1 = 1. So by Lemma 8.2,

d

d\epsilon 
\mu (K + \epsilon A(u))

\bigm| \bigm| \bigm| \bigm| T
\epsilon =0

f = \mu TA(u)h.

From this and (8.2),

\BbbE 

\Biggl[ \biggl( 
d

d\epsilon 
\mu (K + \epsilon A(u))T

\bigm| \bigm| 
\epsilon =0

f

\biggr) 2
\Biggr] 
=
\sum 
p\in u

\sum 
q\in \scrM \scrB 

\nu (u)pKpq

\bigl[ 
\mu T (epe

T
q  - epe

T
p K)h

\bigr] 2
=
\sum 
p\in u

\nu (u)p\mu 
2
p

\sum 
q\in \scrM \scrB 

Kpq

\bigl[ 
(eTq  - eTp K)h

\bigr] 2
=
\sum 
p\in u

\nu (u)p\mu 
2
p

\sum 
q\in \scrM \scrB 

Kpq

\bigl[ 
(Kh)2p + h2

q  - 2(Kh)phq

\bigr] 
=
\sum 
p\in u

\nu (u)p\mu 
2
p

\bigl[ 
(Kh2)p  - (Kh)2p

\bigr] 
.
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We are now ready to prove Theorem 8.1.

Proof of Theorem 8.1. By Lemmas 8.3 and 8.4,

\BbbE 

\Biggl[ \biggl( 
d

d\epsilon 
\mu 
\Bigl( 
K + \epsilon B(N)

\Bigr) T \bigm| \bigm| \bigm| \bigm| 
\epsilon =0

f

\biggr) 2
\Biggr] 

= N
\sum 
u\in \scrB 

1

\lfloor N\lambda (u)\rfloor 2

\lfloor N\lambda (u)\rfloor \sum 
n=1

\BbbE 

\Biggl[ \biggl( 
d

d\epsilon 
\mu 
\Bigl( 
K + \epsilon A(u)(n)

\Bigr) T \bigm| \bigm| \bigm| \bigm| 
\epsilon =0

f

\biggr) 2
\Biggr] 

=
\sum 
u\in \scrB 

N

\lfloor N\lambda (u)\rfloor 
\sum 
p\in u

\nu (u)p\mu 
2
p

\bigl[ 
(Kh2)p  - (Kh)2p

\bigr] 
.

(8.11)

The result follows by letting N \rightarrow \infty .
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